
1 | P a g e Journal of Applied Information Science and Technology, 9 (2) (2016)

An Ontology Model for Software Measurement in Software
Project Management

Ezekiel U Okike1, and Ofaletse Mphale2

Department of Computer Science, University of Botswana, Gaborone, Botswana1,2

euokike@gmail.com1, ofaletse_offie@hotmail.com2

Abstract

Purpose : This paper demonstrates an approach to Software Project Management measurement based
on ontology.

Design/Methodology/Approach: The study adopted measurement theory approach in the definition
of models of Software Project Management measures of success/failure

Findings: Using this approach, the resulting model was suitable for classifying and categorizing
project success measures into ideal success, acceptable tolerance, and unacceptable tolerance

Practical Implication: The paper contributes to project success/failure measurement based on
measurement theory

Originality/Value: The study is an application of measurement theory in measuring project success
using ontology approach

Key words: Ontology, Software measurement, project management, measurement theory

Introduction
An ontology is a formal approach to specifying
a concept and its representation of a domain of
interest (Kang Ye etal, 2009). The concept
under consideration is explicitly described and
represented as appropriate using formalisms or
other representation systems. In this description,
properties or features of the concept are
identified; also relative concepts are discovered
as well as and the relationships between the
concepts (Silvonen, 2002).

Using ontologies knowledge have been
semantically structured in philosophy and the
metaphysics disciplines, computational models
have been created in Artificial intelligence for
automated reasoning, and classes, relations,
functions and other objects have been defined
(Gruber, 2009). Pereira and Santos (2009)
suggested that ontologies support browsing and
searching of semantic contents, promote
interoperability for facilitating knowledge
management and configuration, and assist in the
construction of models or theories of domains.
Other uses of ontologies include sharing
common understanding of objects, enabling

knowledge reuse, enabling explicit
assumptions, separating and analysing domains,
and organising contents in knowledge based
Information systems and supportive
components such as libraries/digital libraries,
data centres, data banks, relational data bases,
data ware houses, data marts, dictionaries and
thesaurus systems.

Okike, Motshegwa and Molly (2016) suggested
the useful applications of ontologies in
Information systems from three perspectives
namely: Information systems research,
Information systems development, and
Information systems security.

In research for instance, an ontological
approach is utilized when a researchers
considers the choice of a research method as
shown in figure 1. From figure 1, a research
method is either qualitative or quantitative or
both, and the strategy can be a case study or an
experiment on the one hand; or a deduction or
induction on the other. The approach is either
empiricist or interprecivist. All of the stages
build up to an ontology.

mailto:euokike@gmail.com
mailto:ofaletse_offie@hotmail.com

An Ontology Model for Software Measurement in Software Project Management

2 | P a g e Journal of Applied Information Science and Technology, 9 (2) (2016)

Fig. 1. Impact of ontology in the choice of research methods
(Source:http://research methodology.net/)

In this paper, we discuss the application of
ontology in the software measurement domain in
order to address crucial issues pertinent to
measurements in Software Engineering and
Information systems.

Overview of Software Measurement and
Measurement Theory

Measurement
Measurement is “a mapping from the empirical
world to the formal, relational world.

Consequently, a measure is the number or
symbol assigned to an entity by this mapping in
order to characterize an attribute” (Fenton &
Pfleeger (1997:32). For instance consider two
people: James who is 5ft tall, and John, who is
4ft tall. We can establish a representative
measure of the heights of James and John by
considering two system, namely- the real world
and the number systems as illustrated in Table
1below

Table 1. Real world vs number system
Real word system Number system
James 5ft
John 4ft

Furthermore, define a mapping function M
which maps the real world system into a number
system as:

M: RN (R is Real world system; N,
Number system) 2.17(1)

Let M be a mapping with R as its domain, and
with its range contained in N. Let rR, then
there is a unique n N such that rMn holds.

Hence, we can define different mapping
functions for James and John, from the real
world to a number system which specifies their
heights as shown in table 1:

 M(James): RN and M(John) : RN (2)

By substituting their heights in (2), we obtain:

M(5), and M(4) (3)

We can define a relational system which
represents this mapping using the “taller than”
relation in the real world, and “greater than”,
“less than” relations in numerical system.
Hence, “James is taller than John” implies that:

M(James) > M(John) (4)

From (1), (2),(3) and (4), measurement involves
a representation and also the conditions under

http://research

Ezekiel U Okike1, and Ofaletse Mphale2

3 | P a g e Journal of Applied Information Science and Technology, 9 (2) (2016)

which the measurement is satisfied as obtains in
the measurement theory.

Software Measurement and Measurement
Theory

Software measurement involves three software
activities namely:

i) Processes. These are collections of software
related activities such as analysis, design,
coding, testing, installation etc.

ii) Products. These are artefacts, deliverables
or documents resulting from process
activities

iii) Resources. These are entities required by a
process activity. Example includes
personnel, budgets, computer hardware,
other stationaries.

Processes may be measured using appropriate
Software Project Management tools and
estimation techniques, while Software products
may be measured from 2 essential perspectives
– internal attributes and external attributes.
Internal attributes are measured in terms of the
product itself. These attributes include cohesion,
coupling, nesting level, data structures,
algorithms, and the software itself. External
attributes are measured in terms of how the
product, process or resource relate to the
environment. Examples of external attributes of
software include usability, reliability, efficiency,
reusability, maintainability, portability,
testability etc

Measurement theory specifies the rules for
developing and reasoning about all kinds of
measurement (including software
measurement/measurements in Information
systems). Rule based approaches are common in
the sciences . For instance, Mathematicians
learned about the world by defining axioms for a
geometry; by combining axioms and using their
result to support or refute their observations,
they expanded their understanding and the set of
rules that govern the behaviour of objects.

As explained in Okike (2007), the obligation of
any software measurement activity is to identify
the entities and attributes to be measured.
Baker et al (1990), suggested the three
approaches of measurement theory as follows:

i) Determine the axioms that capture intuitive
understanding and empirical observations
about the attribute(s) of an entity of interest

ii) Apply the representation theorem of
measurement to show that the attribute can
be appropriately represented in a number by
a mapping which preserves the axioms

iii) Apply the uniqueness theorem to show that
any two functions defined from the set of
entities to the set of numbers faithfully
represent the attribute, and they are related

According Ralph (2005), one reason for
“moving software development into the
engineering arena” is to be able to control the
process, and to control a process, it must be
measurable’’. However, a measure is valid only
when we are able to verify that the number is
representative of the attribute that is being
measured. By applying rule based ontology, we
can validate a measurement approach as
demonstrated in this paper.

Ontology Based Software Measurement
Models

An Ontology Based Cohesion Model

The term cohesion is defined as the degree to
which the elements in a module belong together.
In the Object Oriented paradigm it refers to the
degree of relatedness or consistency in
functionality of members in a class (Yao, Orme,
and Etzkorn, 2005). Hence, it is a measure of
how tightly bound or related the internal
elements of a software systems are. This
measure captures the degree of association of
elements within a module, and the programming
paradigm used determines what is an element
and what is a module. Many researchers
proposed cohesion measures for software in the
procedural, Object Oriented and lately in the
Aspect Oriented paradigm. (Bieman and Ott
(1994 ; Bieman and Kang (1998) Chidamber
and Kemerer , 1994), Hitz and Montazery
(1996), Badri and Badri (2004), Gupta 1997,
Okike (2007, 2008, 2010)).

Using data from Okike (2007), cohesion is
measured using the Lack of Cohesion in
Methods (LCOM) proposed by Chidamber and
Kemerer (1994) and its adjusted interpretation as
proposed in Okike (2007). Hence LCOM is
defined

Lack of Cohesion in Methods (LCOM)

Consider a class C1 with n methods M1,
M2,…,Mn. Let{Ii}= set of instance variables
used by method Mi. There are n such sets
{Ii},…,{In}.

An Ontology Model for Software Measurement in Software Project Management

4 | P a g e Journal of Applied Information Science and Technology, 9 (2) (2016)

Let P = { (Ii, Ij) | Ii ∩ Ij = ᶲ}, and Q = { (Ii, Ij) |
Ii ∩ Ij ≠ ᶲ }. If all n sets { I1}, …,{In}

are ᶲ then let P = ᶲ

LCOM = { |P|- |Q|, if |P| > |Q|

= 0, otherwise

Example: Consider a class C with three methods
M1, M2

and M3. Let {I1} = {a,b,c,d,e} and {I2} =
{a,b,e} and {I3}= {x,y,z}.

 {I1} ∩ {I2} is nonempty, but {I1} ∩ {I3} and

{I2} ∩ {I3} are null sets.

 LCOM is (the number of null intersections –
number of non empty intersections), which in
this case is 1.

The theoretical basis of LCOM uses the notion
of degree of similarity of methods. The degree of
similarity of two methods M1 and M2 in class
C1 is given by: σ() = {I1} ∩ {I2}

where {I1} and {I2} are sets of instance
variables used by M1 and M2 . The LCOM is a
count of the number of method pairs whose
similarity is 0 (i.e, σ() is a null set) minus the
count of method pairs whose similarity is not
zero.

 The larger the number of similar methods,
the more cohesive the class, which is
consistent with the traditional notions of
cohesion that measure the inter relatedness
between portions of a program.

 If none of the methods of a class display
any instance behaviour, i.e. do not use any
instance variables, they have no similarity
and the LCOM value for the class will be
zero.

 The LCOM value provides a measure of the
relative disparate nature of methods in the
class. A smaller number of disjoint pairs
(elements of set P) implies greater similarity
of methods. LCOM is intimately tied to the
instance variables and methods of a class,
therefore is a measure of the attributes of an
object class

Definition 2
A refinement of previous definition of LCOM to
include inherited methods and attributes was
proposed by Hitz and Montazeri(1996)

Let P = ᶲ, if AR (m) = ᶲ Ɐ m  MI (c)

= {{m1,m2}  m1,m2  MI(c)  m1 ≠
m2  AR(m1)  AR(m2)  AI (c) = ᶲ }, else

Let Q = {{ m1,m2}  m1,m2  MI(c)  m1 ≠
m2  AR (m1)  AR(m2)  AI(c) ≠ ᶲ }

Then LCOM2(c) = {P - Q, if P > Q

= 0, otherwise

LCOM2 of many classes are set to zero although
different cohesions are expected

Let P = (n- 1) (1)

Q = n-1 (2)

So that LCOM

 P - Q = ௡!
(௡ିଶ)!ଶ!

 - 2(n-1)
(3)

From (3), for n<5, LCOM =0;

 for n 5, 1<LCOM < n

Proposal of Ontology based Project
Management Model

Measuring Project Success
Let S be the set of project success measures, and
R be the set of real numbers. A project success
measure M is a function from S to R, whose
mapping is denoted:

M: SR

Assuming for a set of objects O which represents
a set of relations r, an attribute A (potentially
possessed by each member of object O) is
identified. Suppose A induces a set of empirical
relations R1,R2.R3…Rn on object O, then denote
this as r(R1,R2.R3…Rn)

Let <r,R> be the ordered pair of interest. To
measure the attribute A, a mapping from the set
of objects O possessing the attribute A into a
number system is required.

Let R the set of real numbers be the number
system.

Let N  R be a set

Let P = < P1,P2,P3…Pn> be a set of relations
on N, then

K = <N,P>

Suppose N=R, then several empirical relations,
and numerical relations could result upon which
the representation condition for a measure M for
attribute A resulting into a map where M maps
objects in O (the set of relations r) to elements in
N (the real number system R) may apply

Ezekiel U Okike1, and Ofaletse Mphale2

5 | P a g e Journal of Applied Information Science and Technology, 9 (2) (2016)

The following relations may result from the rule:

P1  R × R : “(,y)  P1 if  > y”

P2  R × R : “  P2 if  > 70” (i.e y =70
represents some threshold number)

P3  R × R : “  P3 if  > y  15” (i.e 15
represents some number,  the

Threshold

Empirical Application
Using data from ICT projects collected in
Botswana to measure Project success /Failure
Mpale (2016), established success thresholds or

categorization to include the ideal success at
46/46 (100% fulfilment of success measurement
criteria), acceptable success at 36-45 of all
success elements fulfilled out of 46 (78-99%)
satisfaction, and unacceptable tolerance at less
than 36 of success elements fulfilled out of 46
elements. The 46 are the identified success/
failure project measurable criteria as shown in
Table 2. Table 3 illustrates this success into
their categories. The scenarios explained in the
relational model above agrees with the success
categorization principle . The result may
represented on a success/failure number line as
shown in figure 2

Table 2. Success or failure project measurable criteria

Source. Mphale (2016)

An Ontology Model for Software Measurement in Software Project Management

6 | P a g e Journal of Applied Information Science and Technology, 9 (2) (2016)

TABLE 3: Project Success And Categorization

Organisations rankings Summary of project success
factors ratings measured up
against the Metric model

Metric tool success
categorisation

Company A 40/46 (86.9%) Acceptable success

Company B 36/46 (78’2%)  Unacceptable success

Company F 34/46 (73.9%)  Unacceptable

Company C 33/46 (71.7%)  Unacceptable

Company E 31/46 (67.3%)  Unacceptable

Company D 30/46 (65.2%)  Unacceptable
Note: Ideal Success (46 All elements fulfilled) Acceptable tolerance (45 –36 elements fulfilled)
Unacceptable tolerance (less than 36 elements fulfilled)

Figure 2 Success measurement number line

Fig. 2. Success measurement number line

Definition of IS Project Success /Failure

The Success/failure of an IS project may be
estimated as the rate of IS components to the
Total IS components elements .

 Technology1 : Total number of metrics
elements available in the Technology
component of IS during IS project success
evaluation

 Technology0: Total number of metrics
elements available in the Technology
component of IS in the original metrics.

 Organisational1 : Total number of metrics
elements available in the Organisational
component of IS during IS project
evaluation

 Organisational0 : Total number of metrics
elements available in the Organisational
component of IS in the original metrics

 Human_Resource1 : Total number of
metrics elements available in the Human

resource component of IS during IS
project evaluation

 Human_Resource0 : Total number of
metrics elements available in the Human
resource component of IS in the original
metrics

 Total_origional_metric_0: Total number of
the metric elements in the original metrics

 Total_origional_metric_0 = Technology0 +
Organisational0 + Human_Resource0

Assumptions:

 For a successful IS/IT Project all the IS
components and their metric measurement
must be available

 If some metric elements or some
components are missing then the concept
of acceptable failure is used.

 Acceptable failure is when some
components are missing and their absence
considered insignificant by the project
manager.

  
0___

%100*Re_log
/

metricorigionalTotal

sourcesHumanonOrganisatiyTechno
FAILURESUCCESS




Ezekiel U Okike1, and Ofaletse Mphale2

7 | P a g e Journal of Applied Information Science and Technology, 9 (2) (2016)

Metrics components weighting

To evaluate and measure the IS/IT project
success, some weights were assigned to the
developed IS project success metrics.
According to Chittoor (2012) metrics should
be measured both during and after the project
execution. The metrics weighting of IS
components was the number of the metrics
measures in each components. Thus in the
Technology category of IS metrics, there are
12 metric measures, hence it was given a
weight of the value 12. For Organisational
component of IS metric there are 23 metric
measures and as such it was given the value
23. Finally the Human resource component of
IS was given the weight of 11 for 11 metric
measures it constitutes. The metric comprised
of 46 measures was given the total weight of
46.

Critical scores evaluation

Each metric measure is a critical score. If
during project evaluation some metric
measures are available there would be
assigned a value 1, otherwise 0 to symbolise
unavailability of the metric measure.
Assuming the Technology component of IS
has 11 metric measures, then critical score is
11.

The following assumptions defined the success
measure of IS into two major categories;

 Success = 100 % critical score (all metric
measures available) – this is the Ideal case
category of success

 Failure = less than 100 %, but greater than
0 % critical score (Partial metric measures
available)

Acceptable Failure definition and categories

The typical IT project may be subject to
review by a host of stakeholder groups,
including the project sponsor, system users,
project team, maintenance and support
personnel, internal and external auditors, and
top management. At any point in time, a
project may receive an entirely different
opinion on success definition and the rate of
failure acceptability.

Acceptable failure is when the user is aware
and understands that the IS/IT project success
is in a failure category but they are still
satisfied with the level of success to carry on
with the project.

Acceptable failure = Success – n

When n equals partial metrics measures
available/ not 100% metric elements

Acceptable failure categories
Acceptable failure is categorised in to two
broad categories of success which are;

 Acceptable tolerance = less than 100%
metric measures, but greater than 50% of
the metrics measures.

 Unacceptable tolerance = greater than 0%
metric measures, but less than 50% of the
metric measures.

Assumption:

 Acceptable failure cannot be equal to 0%
otherwise you have not implemented IS
system in your organisation.

Acceptable failure categories are shown in
Figure 3

Fig. 3 Acceptable Failure main categories

Partial metric elements available

>0% metric element and <50% metric
elements available

Acceptable Failure

Acceptable tolerance

Unacceptable tolerance

>50% metric element and <100%
metric elements available

An Ontology Model for Software Measurement in Software Project Management

8 | P a g e Journal of Applied Information Science and Technology, 9 (2) (2016)

Relationship between Success and Acceptable failure

The relationship between success measurement and acceptable failure is illustrated in Figure 4
following.

Fig. 4. Success vs. Acceptable Failure relationship
NB: Failure = Acceptable Failure, Success = Ideal success

Conclusion
From the forgoing discussion, we suggest that
our proposed Project Management Ontology
follows appropriate software measurement
theoretic approach as validated in our empirical
study with the various identification and
categorization of success into the ideal,
acceptable and unacceptable measures.
Bibliography

Baker, A. L, Bieman, J. M., Fenton, N; Gustafson, D.
A; Melton, A; and Whitty, R. (1990). A
Philosophy for Software Measurement. The
Journal of Systems and Software 12:127-282

Chidamber, S. R, and Kemerer, C. F (1994). A Metric
Suite for Object Oriented Design.
IEEETransactions on Software Engineering 26,
6:476-493

Chittoor, R (2012) Metrics for Project Success.
Retrieved 27 August, 2015 from http://project-
management.com/metrics-for-project-success

Fenton, N., and Pfeedger, S. L (1997).
SoftwareMetrics: A Rigorous and Practical
Approach, 2nd ed, Boston, MA:PSW Publishing

Gruber, T. (2009). Ontology. In L. L. Özsu (Ed.),
Encyclopedia of Database Systems. Springer-
Verlag.

Hitz, M and Montazeri, B (1996). Chidamber and
Kemerer's Metric Suite: A Measurement Theory
Perspective. IEEE Transactions on Software
Engineering 22, 4:267-270

Kang Ye etal. (2009). Ontologies for crisis contagion
management in financial institutions. Journal of
Information Science, 35 (5), 548–562.

Mphale, F (2016). Assessment of ICT Project
Success/Failure in Botswana Using Project

Metric Models. MSC Dissertation, Department of
Computer Science, University of Botswana.
Unpublished

Okike, E. U (2007). Measuring Class Cohesion in
Object-Oriented Systems Using Chidamber and

Kemerer Metric Suite and Java as Case study. PhD
Thesis Department of Computer Science,
University of Ibadan. Unpublished

Okike, E. U, Motshegwa, T, and Kgobathe, M. N
(2016). Ontological Perspectives in Information
Systems, Information Security and Computer
Attack Incidents (CERTS/CIRTS). Proceedings
of the 1st International Conference on the
Internet, Cyber Security, and Information Sytems
(ICICIS), PP. 46-60

Pereira, T and Santos, H. (2009). An Ontology Based
Approach to Information Security. F. Sartori, M.
A. Siccilia, and N. Manouseli (eds): MTSR 2009,
CCIS 46, pp. 183-192

Ralph, N. D (2005). A validation by Measurement
Theory of Proposed Object Oriented Software
metrics. NASA Technical Report Server
(NTRS). Reteieved 3/01/2017 from
http://ntrs.nasa,gov/search.jsp?R=199611441

Silvonen, P. (2002, October 21). Ontologies and
Knowledge Base. Retrieved October 22, 2015,
from http://www.ling.helsinki.fi:
http://www.ling.helsinki.fi/~stviitan/documents/
Ontologies_and_KB/ontology.html

Yao, H., Orme, A. M, and Etzkorn, L. (2005)
Cohesion Metric for Ontology Design and
Application. J. Computer Sc., 1(1):101-113

100% metric elements

|SUCCESS or FAILURE|

Acceptable Failure Success

Unacceptable tolerance Acceptable tolerance Ideal Success

Partial or 100% metric elements
available

100% metric elements
available

Partial metric elements
available

> 0% metric elements but <50%
metric elements available

>50% metric element and
<100% metric elements
available

http://project-
http://ntrs.nasa,gov/search.jsp?R=199611441
http://www.ling.helsinki.fi:
http://www.ling.helsinki.fi/~stviitan/documents/

